Fluotime 300

PicoQuant GmbH — компания, лидирующая в области создания импульсных диодных лазеров, сбора данных с временным разрешением, систем счета единичных фотонов и времяразрешенных флуоресцентных спектрометров и микроскопов, купить оборудование PicoQuant Флуоресцентный спектрометр Fluotime 300 купить в Техноинфо

High Performance Fluorescence Lifetime and Steady State Spectrometer

The FluoTime 300 "EasyTau" is a fully automated, high performance fluorescence spectrometer for steady-state, life time and phosphorescence measurements. The FluoTime 300 contains the complete optics and electronics for recording steady state spectra and fluorescence decays by means of Time-Correlated Single Photon Counting (TCSPC) or Multichannel Scaling (MCS) from few picoseconds to several seconds. The system is designed to be used with picosecond pulsed diode lasers, LEDs or Xenon lamps (CW and pulsed). Multiple detector options enable a large range of system configurations from the UV up to the IR range. The system features an ultimate sensitivity with 29000:1 Water Raman SNR. The FluoTime 300 can be used to study fluorescence and phosphorescence decays from few picoseconds to several seconds. With a large range of additional accessories the system is an excellent standard for research and analysis.

The FluoTime 300 is a high performance fluorescence lifetime spectrometer with a steady-state add-on. It can be used to study various samples and perform several applications, including:

  • Time-Resolved Fluorescence
  • Singlet Oxygen
  • Time-Resolved Photoluminescence (TRPL)
  • Fluorescence Upconversion
  • Fluorescence Anisotropy (Polarization)
  • Steady-State Fluorescence Spectroscopy
  • Fluorescence Anisotropy
  • Quantum Yield Measurements
  • Photochemistry
  • LEDs, OLEDs, quantum dots
Optical configuration
  • L-Geometry
Mode of operation
  • Steady State Operation
  • Time-Correlated Single Photon Counting (TCSPC)
  • Multichannel Scaling (MCS)
  • Signal-to-noise ratio (RMS) typically better than 29000:1, as measured with double monochromators in the exciation and emission light path, PMA175 Detector and Starna water standard, excitation wavelength 350 nm, spectral bandwidth 5 nm, integration time 1 s
Lifetime range
  • < 40 ps to 10 µs with PMT detector and TCSPC electronics
  • < 10 ps to 10 µs with Hybrid detectors, TCSPC electronics, and suitable laser
  • < 10 ps to 10 µs with MCP-PMT detector, TCSPC electronics, and suitable laser
  • Up to several 100 ms with any detector and MCS electronics
Excitation sources
  • Picosecond pulsed diode lasers or LEDs 240 – 1990 nm with repetition rates up to 80 MHz, common driver unit
  • Sub-microsecond pulsed Xenon flash lamp
  • 300 W Xenon arc lamp
  • External lasers such as Titanium:Sapphire lasers or pulsed DPSS lasers
  • Czerny-Turner type
  • Focal length: single monochromator 150 mm or 300 mm, one or two exit slits; double monochromator 2 x 300 mm, one or two exit slits (switching between additive and substractive in emission)
  • Grating with 1200 g/mm, blazed at 500 nm and 600 g/mm, blazed at 1250nm (other gratings on request)
  • Slit width adjustable between 0 mm and 10 mm (continuously adjustable, completely motorized), dispersion 2.7 nm /mm (single, 300mm focal lenght)
  • Stray light rejection typically 1:10-5 (single monochromator), 1:10-8 (double monochromator)
  • Photomultiplier Tubes (PMTs) with various spectral ranges and sensitivities between 185 nm and 1010 nm
  • Microchannel Plate Photomultiplier Tubes (MCP-PMTs) with various spectral ranges between 185 nm and 910 nm
  • UV/VIS – NIR PMT covering wavelenght ranges from 200 to 1010 nm
  • Infrared sensitive Photomultiplier Tubes (PMTs) with different spectral ranges between 950 nm and 1700 nm
  • Hybrid-PMT with various spectral ranges and sensitivities between 200 nm and 900 nm
  • Easy to use, comprehensive, Windows based system and analysis software
  • Data archiving in workspace, data export features, data arithmetic
  • Assisted mode using Wizards for standardized measurements
  • Customized mode with full control of all hardware parameters
  • Scripting mode for automation of routine measurements
  • Remote execution of scripts (extension of automation to 3rd party devices)
  • Lifetime analysis based on numerical reconvolution procedure, up to 5th exponential decay functions, lifetime distributions, anisotropy, global analysis, rigorous error analysis

Fluorescence Lifetime:

Time-Resolved Emission Spectra (TRES):
Quantum Yield:
Steady State Fluorescence Anisotropy:
Time-Resolved Fluorescence Anisotropy:

Abid A.R., Marciniak B., Pędziński T., Shahida M. Journal of Photochemistry and Photobiology A: Chemistry, Vol.332, p.241-250 (2017)

Oluwole D.O., Nyokong T. Dyes and Pigments, Vol.136, 262-272 (2017)

Lermer C., Birkhold S.T., Moudralovski I.L., Mayer P., Schoop L.M., Schmidt-Mende L., Lotsch B.V. Chemistry of Materials, Vol028, p.6560-6566 (2016)

Qui X., Wegner D., Wu Y.-T., van Bergen en Henegouwen P.M.P., Jennings T.L., Hildebrandt N. Chemistry of Materials, article ASAP (2016)

Paolucci V., Mejlsøe S.L., Ficker M., Tom Vosch T., Christensen J.B. The Journal of Physical Chemistry B, Vol.120, p.9576-9580 (2016)

Kuzmin V.A., Podrugina T.A., Nekipelova T.D., Doroshenko I.A., Proskurnina M.V., Golovina G.V., Radchenko E.V., Kostyukov A.A., Temnov V.V., Matveeva E.D., Palyulin V.A., Zefirov N.S. Doklady Chemistry, Vol.470, p.264-267 (2016)

Khan A.,Rehman Z.-u., Rehman M.-u., Khan R., Zulfiqar, Waseem A., Iqbal A., Shah Z.H. Inorganic Chemistry Communications, Vol.072, p.33-41 (2016)

Mosconi E., Meggiolaro D., Snaith H.J., Stranks S.D., De Angelis F. Energy & Environmental Science, advance article (2016)

Ai P., Mauro M., Gourlaouen C., Carrara S., De Cola L., Tobon Y., Giovanella U., Botta C., Danopoulos A.A., Braunstein P. Inorganic Chemistry, article ASAP (2016)

Liu J., Pathak S.K., Sakai N., Sheng R., Bai S., Wang Z., Snaith H.J. Advanced Materials Interfaces, early view (2016)